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Abstract

This paper studies how a sender optimally communicates infor-

mation to receivers when communication is coarse, but the sender’s

interests are aligned with those of the receivers. Results from infor-

mation theory, based on the notion of mutual information, are used

to derive equilibria characterizing monopolistic behavior in this con-

strained communication model. The main finding is that when com-

munication constraints are present, the correlation between receivers’

actions is typically greater than in a frictionless environment. If con-

straints are severe enough, this correlation is one. The result appears

to be robust to different specification of industrial structure and sug-

gests a theoretical background to studies of mass media as a source of

herding or contagion.
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1 Introduction

Newspapers provide information to many diverse readers. At the same time

the readers are busy and have just enough time to flip through the headlines.

How should the newspaper select the topics, whom should they inform and

how should they do it? What is an effect of mass media on readers’actions?1

This note formulates a simple economic model of constrained communica-

tion, in which the receivers have to obey a capacity constraint on how much

information they can read. This approach is novel in economics, because the

focus is not —as is in the current rich and growing literature on communica-

tion games —on the conflict of interests between the sender and the receiver

(e.g. Crawford and Sobel (1982), Hörner and Skrzypacz (2011) or Kamenica

and Gentzkow (2011), etc.). It is assumed here that there is no such conflict,

so —without communication constraint —perfect communication should en-

sue.2 The main finding is that when communication constraints are present,

the correlation between receivers’actions is typically greater than in a fric-

tionless environment. If constraints are severe enough, this correlation is

one.

There are three innovations in this paper.

Constrained communication. Even if the presentation below interprets

the sender as a mass medium such as a newspaper or a TV channel,3 there

are other examples of social institutions in which constrained communication

of the type studied here seems to play some role. Rating agencies must ex-

press a complicated situation by means of a simple rating. Educators must

1The following quote emphasises both the source of friction and its economic reper-
cussion: "Seen from London and other places that might still be called the commanding
heights of global finance, the countries of eastern Europe look much of a muchness. With
the big exception of Russia, the rest tend to merge when viewed by crisis-weary traders
glued to their screens. Sell one, sell all has been the motto. (...) Journalists too, including
this one, often put everything together under one headline. (...) With little space and
time what else can be done?" —"How to annoy someone from central or eastern Europe",
by Stefan Wagstyl, The Financial Times, February 27, 2009.

2Since this is not a cheap talk game in the Crawford and Sobel (1982) tradition, but
rather the one in which the sender commits to a decision on an informational policy prior
to receivers choosing their actions, cheap talk bubbling equilibria do not emerge.

3A recent survey of political economy literature on the role of mass media in politics
and policy is Prat and Strömberg (2011).
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decide what to put in a curriculum. Pundits have just minutes to explain

complex social issues on evening news, and politicians have only political slo-

gans to present their election platforms to voters. Some effort has been put

into studying behavior under, and economic implications of, communication

with capacity constraints,4 but this literature does not use the tools adopted

by this paper. Techniques essential to handle the model studied below are

provided by information theory, started by the seminal Shannon’s 1948 pa-

per. To my knowledge, information theory has been used by economists in a

somewhat different context of rational inattention models, e.g. Sims (2003),

(2006). Information theory is concerned with optimal communication when

constraints on communication are present, usually in an engineering context

of data compression or communication between servers, satellites, or com-

ponents of a computer. In contrast, this note studies constrained commu-

nication between noncooperative economic agents; one sender and multiple

receivers, for that matter. Thus, it is necessary to cast a standard infor-

mation theoretic model in such a way that the trade-offs facing the sender

can be investigated. For example, one approach in information theory is to

study a relationship between some measure of available communication ca-

pacity, R, and some measure of distortion at the receiver, D. This results

in a function R (D), describing the boundary of feasible distortion-capacity

pairs. This note focuses on such functions with multidimensional domain,

where each separate dimension is interpreted as a distortion (or disutility) of

a separate receiver.

Correlation among the readers. Regarding the effects that mass media

may have on readers’actions in this context, one result stands out. Mass

media have a striking ability to magnify the correlation of actions across

their customers, relative to frictionless environment. That is, when commu-

nication constraints are present, the correlation between receivers’actions is

typically greater than when communication is frictionless. This effect can

be phenomenally strong: if communication constraint is severe enough, all

4E.g. Chan and Suen (2008), Kwiek (2010), Glazer and Rubinstein, (2004), Sah and
Stiglitz (1986) and a great deal of studies on "recommendations" or "certification", such
as Gill and Sgroi (2011).
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receivers act in complete unison, i.e., the correlation between their actions is

perfect.

A correlating effect of mass media has been acknowledged in the litera-

ture. There is a stream of thought in sociology or theory of mass commu-

nication which views mass media as an institution that socializes individu-

als, correlates actions and integrates diverse populations (e.g. see McQuail

(2010)). Closer to economics, co-movement across diverse industries is one of

the defining features of business cycle (Christiano and Fitzgerald (1998)). It

has been proposed that frictions in information transmission in mass media

are key to explaining such co-movement across industries and geographical

regions, e.g. Calvo and Mendoza (2000), Veldkamp (2006a, 2006b). How-

ever, in the study below, the receivers are completely isolated, apart from

the fact that they see a common message. Hence, there is no underlying

strategic complementarity that could be a source of high correlation among

their actions.5

Flexible product design.6 The receivers’utility possibility frontier, embed-

ded in the communication constraint, R (D) ≤ R, says how the newspaper

can trade-off distortions across the readers. This utility possibility frontier

seems to be a natural starting point for the analysis of product design, which

— to my knowledge — has not been used in this context. The uniformly-

pricing and profit-maximizing monopolist-sender can quite flexibly design

her informational policy not only to create, but also to allocate value across

the customers. This flexibility in shaping a demand is closely related to the

concept of demand rotation introduced by Johnson and Myatt (2006), but

here the demand is derived from the primitive notion of the utility possibility

frontier. Whenever there is a chance to equalize the valuations of the buyers,

5The study below is also remotely related to models of informational herding, such as
in Banerjee (1992), where the signal conveyed through predecessors’actions may be strong
enough for an agent to choose the same action regardless of her own signal so that herding
may ensue. The key factor is the coarsnes of the action set —otherwise agents would tailor
their actions in a flexible manner, thus revealing their private signal to their successors.
This resembles the communication constraint in the model below, which — if relaxed a
little —would lead to a better guess of the true state of nature.

6Mass media are sometimes given as an example in models of product design or product
differentiation. Footnote 24 in Johnson and Myatt (2006) mentions radio stations, while
Irmen and Thisse (1998) give an example of Newsweek and Time.
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the monopolist would like to do that. The reason is that with uniform prices,

the price is equal to the valuation of the buyer with the lowest valuation, so

there is an unambiguous benefit from increasing this lowest value, even if

that means that values of some other receivers —buyers and non-buyers —

are driven down. Consequently, the demand function exhibits a kink at an

equilibrium point: values are similar or even equal among all buyers, but

drop discontinuously for the non-buyers. In a flexible enough environment,

the monopolist can extract full created surplus. This is not because she

changes prices to fit the valuation, as in price-discrimination theory, but pre-

cisely for the opposite reason, because she can change the valuations to fit

some uniform price. In general, not all potential surplus may be created, but

in symmetric environments, the uniformly-pricing monopolist may be fully

effi cient.

Section 2 introduces the model and the concept of constrained commu-

nication. The key information theoretic result, allowing the characterization

of this constraints, is laid down in Section 3. Section 4 discusses the problem

of the monopolist sender and the social planner. Section 5 provides a solu-

tion algorithm for the Gaussian-quadratic case. In the context of this case,

Section 6 explains the correlating effect of the communication constraint.

Some comments on possible extensions are made in Section 7. Proofs are in

Appendix A.

2 Constrained communication: the model

Preliminary comments. Any model of communication must have at least
two locations, devices or agents, between which communication occurs. The

first location, the sender, can inform the other location, the receiver, about

the realization of some state of nature. In this note, by constrained commu-

nication we mean that the sender cannot inform the receiver perfectly, due to

some coarsness of the message space. This could be a result of a combination

of two reasons. Firstly, any communication is a physical process that takes

time or space, e.g. it takes one minute to read one headline. Secondly, the

receivers are impatient or otherwise constrained and they will devote finite
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time to read the sender’s message, e.g. the receiver has 10 minutes. As a

consequence, the sender must pack its message in ten headlines.

To be more formal, let the state of nature be represented by a random

variable X whose realization is x ∈ X . If we are given R binary digits (bits)
to represent a realization of this random variable, then the available number

of messages is 2R. Let f (x) ∈
{

1, ..., 2R
}
be a message that is generated

from state x; function f is called an encoding function. A decoding function,

g :
{

1, ..., 2R
}
→ X , provides an estimate, x̂, of the realization, x, as a

function of observed messages. That is, g (f (x)) = x̂. If the set of states of

nature is richer than the number of messages, then the estimator will not be

able to replicate the original state of nature perfectly.

One of the aims of information theory is to explain how one can construct

f and g so that some measure of expected loss associated with this communi-

cation is minimal. Next section applies this structure to an economic model.

2.1 Economic model

Physical environment. There areN receivers; each of them has an optimal

action which is unknown to her, but is interested in learning it. This optimal

action will be called her state of nature. The state of nature of receiver n

is represented by a random variable Xn, the realization of which is xn ∈ R.
These states of nature are not necessarily independent across the receivers.

A multivariate random variable X = (X1, ..., XN) has a joint probability

distribution p (x), x ∈ RN . Later, we will focus on Gaussian distribution.7

There is a sender, who knows the state of nature of each receiver. The

sender is to inform the receivers about the state of nature by sending a

common message. Any communication from the sender to the receivers must

take a form of a stream of binary digits.

Timing. Many markets and institutional forms can be modelled using
7Receivers’heterogeneity can be backed up by a Lancastrian approach to modelling the

demand side of the market (Lancaster (1966)). Individuals may be interested in learning
the realization of a certain combination of some aspects of reality, e.g. one individual may
be interested in a combination of mostly sports news and some weather news, while some
other individual may be interested in the half-and-half combination of sports and weather
news. In this paper, xn is assumed to represent this ultimate combination directly.
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the following common structure. In the first stage, the sender announces an

encoding function f , which maps states of nature into the messages. In the

second stage, all the transactions occur and —in particular —the audience is

decided. It is useful to leave the exact form of this mechanism unspecified

at the moment, but various mechanisms can be investigated. For instance,

receivers may have unlimited access to the messages; or a monopolistic sender

may restrict the audience by charging a positive price, etc. In the third

stage, the sender learns the realization of the state of nature and sends the

message according to the encoding function. Finally, in the fourth stage,

receivers choose their actions, x̂n, and their payoffs are realized. The function

that maps the sender’s messages into receivers’actions is called a decoding

function, gn.

Receivers’problem. Receiver n cares about estimating the unknown
realization of state xn. Her action is denoted x̂n ∈ R, and X̂n is the action

as a random variable induced by a strategy profile. Written as a vector, x̂

is the realization of X̂. Let dn (xn, x̂n) ≥ 0 be the measure of distortion or

disutility associated with selecting x̂n when the true state is xn. Later, we

will focus on the case where this distortion is the square distance between x̂n
and xn. Let Dn = EX,X̂dn (xn, x̂n) be the ex ante distortion of nth receiver,

induced by f and g. Let D̄n be the distortion level of nth receiver induced by

her optimal behavior, if she does not receive any messages from the sender.

Hence, 0 ≤ Dn ≤ D̄n, and the ex ante willingness to pay for information

provided by the sender is the reduction in distortion attributed to reading

the sender’s message, D̄n −Dn.

The receiver will read the message broadcast by the sender and consisting

of a stream of binary digits, but can physically read only at a rate of R bits.

It is assumed that this capacity is the same for all receivers.

Sender’s problem. Incentives of the sender are described by some

non-decreasing function W that maps receivers’expected distortions D =

(D1, ..., DN) into real numbers. Notice that there is no conflict of interest

in communication between the sender and the receivers in the sense that

both the sender and receiver n benefit from lowering Dn, if distortions of all

the receivers apart from n are given. Alternatively, the seller could benefit
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from inducing some action of the receiver that the receiver would not want

to choose; a case like that is briefly mentioned in Section 7.

The above general model permits many industry structures. For exam-

ple, the sender may be a monopolist who cannot price-discriminate. In the

second stage of the model above, the monopolist posts a single subscription

price and then the receivers decide whether to buy the subscription. Since

the receivers’willingness to pay for a subscription depends on the profile of

distortionsD, monopolist’s profit will also depend on it. Secondly, the sender

may be a price-discriminating monopolist and therefore may be interested in

maximizing the total sum of receivers’willingnesses to pay. The same would

happen if the sender was a benevolent broadcaster, whose objective function

is the minimization of the sum of distortions. Clearly, the sender’s objec-

tive function again depends directly on D. These examples will be studied

in more detail in Section 4 but they are not exhaustive and other interest-

ing cases can be postulated. For example, one can consider a reduced-form

model of an advertising newspaper, in which the sender’s payoff depends on

the number of active readers, subject to a constraint that the gain of an

individual receiver is not smaller than some exogenous cost of buying and

reading the message. As long as objective of the sender can be expressed as

a function W (D), the analysis is relevant.

2.2 Rate distortion function

Different encoding-decoding functions can lead to different expected distor-

tion vectors, for a given rate —or to different rates, if a particular distortion

vector is to be obtained. Consider a problem of finding the most effi cient

encoding-decoding pair, in the following sense: for a given profile of allowed

expected distortions D, define Rc (D) to be the minimum rate that is needed

if the expected distortion of receiver n is to be at most Dn, where the search

is over various encoding-decoding functions. The superscript indicates that

this is a "centralized" problem, as one discards the incentive compatibility

constraint of the receivers and assumes that they simply behave according to

function g. Function Rc (D) is called a rate distortion function. This func-
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tion is key in the analysis below because it describes the boundary of feasible

communication.

Let Rd (D) be the minimum rate that is needed if the expected distortion

of n is to be at most Dn, where the choice variable is the encoding-decoding

functions, subject to the receivers’ incentive compatibility constraint — a

constraint that says that all receivers are free to select any decoding function.

The superscript indicates that this is a "decentralized" problem.

Clearly, Rc (D) ≤ Rd (D) . Since there is no conflict of interests between

the sender and the receivers, when encoding function is already selected, the

receivers cannot benefit from deviating to a different decoding function than

the one selected by the sender. Hence

Lemma 1 Rc (D) = Rd (D) .

3 Information theory: basic implications

The purpose of this section is to present a convenient operational character-

ization of the rate distortion function Rc (·). Firstly, define mutual informa-
tion: for a given joint distribution px,y (x, y) of random variables (X, Y ) let

the mutual information of X with Y be:

I (X;Y ) = EX (− log p (X))− EX,Y
(
− log px|y (X|Y )

)
Mutual information is the difference between two terms called entropy, mea-

suring the uncertainty pertaining to a certain random variable. The first

term is the entropy of X, and the second term is entropy of X conditional

on Y . Thus, mutual information can be interpreted as a reduction in uncer-

tainty that follows from learning Y. In our model we are interested in mutual

information of X with X̂, that is in reduction of uncertainty in X when X̂

is recommended to the receiver.

The following definition is key.
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Definition 1 The information rate distortion function R (D) for random

variable X with distortion measure dn (xn, x̂n) is

R (D) = min
px̂|x(x̂|x)

I
(
X; X̂

)
s.t. (1)

EX,X̂dn (xn, x̂n) ≤ Dn, for all n = 1, ..., N

It seems that the definition of R (D) is totally unmotivated and arbitrary.

At first glance, it is diffi cult to judge what the relationship between R (D)

defined in (1) and Rc (D) is. However, it can be shown that the value of

Rc (D) is not smaller than of R (D) and that these two numbers are equal

in a certain limiting sense. This is an incarnation of one of the fundamental

results in information theory. Since this result is adequately presented in the

information theoretic literature (e.g. Cover and Thomas (2006), Ch. 10),

its short discussion is relegated to Appendix B. For the reminder of this

paper, we will use the information rate distortion function defined in (1) as

the characterization of the rate distortion function Rc (D), discarding the

superscript in the latter along the way.

It will be sometimes convenient to use an alternative definition of the

information rate distortion function. Let a = (a1, ..., aN) be any vector of

coeffi cients, such that a ∈ ∆N . Define

R̄ (a,B) = min
px̂|x(x̂|x)

I
(
X; X̂

)
s.t.

N∑
n=1

anEX,X̂dn (xn, x̂n) ≤ B

Namely, the set of constraints in R (D) is replaced by their weighted aver-

age. The functions R (D) and R̄ (a,B) contain the same information. The

relationship between them is

Lemma 2 R̄ (a,B) can be obtained from R (D)

R̄ (a,B) = min
D:
∑
n anDn≤B

R (D) (2)
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R (D) can be obtained from R̄ (a,B)

R (D) = max
(a,B):

∑
n anDn=B

R̄ (a,B)

The proof is in Appendix A and it follows from the fact that R (D) is a

convex function.

Lemma 3 R (D) given in equation (1) is a non-increasing, continuous and

convex function of D.

4 Market form

Define the Utility Possibility Frontier as the set of feasible distortions, with

a property that lowering distortion of one receiver implies that some other

receiver’s distortion must increase,

UPF = {D : R (D) ≤ R and D′ ≤ D ⇒ R (D) > R}

If there are two receivers then one can illustrate the situation graphically,

as on Figure 1, where the axes are inverted, so that they indicate the receivers’

values vn = D̄n − Dn. The set of feasible designs, satisfying R (D) ≤ R, is

marked by the shaded area.8 The North-East frontier of the feasible set,

indicated by a thicker curve, is the set of designs that are Pareto effi cient

for the receivers; this is the UPF . For example, point A shows a newspaper

that is the best for receiver 1, while point C indicates a design that is the

best for receiver 2. By Lemma 3 the set {D : R (D) ≤ R} is convex.
The purpose of this section is to show how UPF can be used in the analy-

sis of a number of different versions of the above model. One has to specify

the precise nature of interactions in the second stage and, in particular, the

form of function W . One observation that is important later in this paper

8To be precise, the shaded area is the set of designs that satisfy R (D) ≤ R, but this set
may include designs that are not feasible. Suppose that the set of trully feasible designs
is the convex set OGCAH. The set characterised by R (D) ≤ R will include the entire
shaded area, because of the inequalities in the constraints of problem (1). This distinction
is inconsequential as far as the set UPF is concerned.
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Figure 1: Utility Possibility Frontier

is the following: in industry structures considered in this paper, an optimal

newspaper design is a point in the UPF .

4.1 Monopolist setting uniform prices

Suppose that the sender is a profit-maximizing monopolist who cannot price

discriminate. That is, in the second stage of the model above, the monopolist

posts a single subscription price, which can be accepted or rejected by the

receivers. If receiver n rejects, her loss is D̄n.

Take as given the set N ∗ of receivers who are to buy the message. Each
receiver is willing to pay at most D̄n−Dn for the subscription, so the maximal

price that the monopolist can charge and still expect all receivers in set N ∗

to buy the newspaper is

min
n∈N ∗

{
D̄n −Dn

}
.

It is assumed that costs of newspaper production are zero. The round brack-

ets in the following expression contains the revenue associated with set N ∗,
and the whole expression defines the profit associated with a given informa-
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tional policy D.

W (D) = max
N ∗⊆N

(
N∗ min

n∈N ∗

{
D̄n −Dn

})
If there are two receivers, then graphical presentation is possible. The iso-

profit curves for the uniformly-pricing monopolist are also drawn on Figure 1.

These are step-like line segments with kinks on the 45o line. For example,

newspapers A and A′ achieve the same profit, although through a different

pricing policy. Newspaper A sells only to receiver 1 for a price WA, while

newspaper A′ sells to both receivers for a price WA/2. The total profit is

clearly WA in both cases. In this example, the profit-maximizing design,

indicated by point B, involves selling to both receivers and the monopolist’s

profit is WB.

In this two-receiver case, it is easy to observe that the only candidate

optimal designs are either the most extreme points, such as A or C, or the

most symmetric point, such as point B on the 45o line. None of the remaining

points on the UPF, such as E, is optimal. To see this, suppose that E is

proposed. If the monopolist sells to one receiver, then E is not optimal

because there exists a better design for this buyer and so higher price can be

extracted. If the monopolist sells to both receivers, then the price is equal

to the lowest valuation among the two. But this lowest valuation can be

increased by lowering higher valuation a little, that is, by moving along the

UPF towards the 45o line. In both cases the price can be increased without

reducing the quantity demanded, so E is not optimal.

This observation is closely related to the result by Johnson and Myatt

(2006). They postulate that a monopolist can select policies that rotate the

demand and conclude that this monopolist would either create a niche market

(that is, to select the policy that makes the demand as vertical as possible to

charge a high price and sell low quantity), or a mass market (that is to select

a policy that makes the demand as flat as possible, to sell as many units as

possible at a low price). In the two-receiver example above, designs A and

C are niche products and B is a mass product.

The obvious general result is the following

13



Proposition 1 If D is an optimal newspaper design for the uniformly pric-

ing monopolist, with N ∗ being the set of buyers, then D maximizes the Leon-

tief function minn∈N ∗
{
D̄n −Dn

}
.

Therefore, the monopolist behaves as a Rawlsian welfare maximizer vis-

a-vis the receivers to whom it plans to sell the newspaper.

In a classical model of a monopolist who faces a given demand, there is

no sense in which the product can be designed —this situation is captured

by assuming that the UPF is just a single point. It is useful to contrast this

model to another polar case, the one of full flexibility, in which the set UPF

extends to every axis.

Proposition 2 Assume that for every receiver n, there is a distortion profile
with Dn such that

(
0, ..., 0, D̄n −Dn, 0, ..., 0

)
∈ UPF. Then in equilibrium,

all receivers are left with zero net surplus.

This result resembles the one that emerges in perfect price discrimination.

However, full extraction of created surplus occurs not because the monopolist

can tailor prices to fit the buyers’valuations, but precisely the opposite reason

— the monopolist can flexibly affect the valuations in order to fit them to

some uniform price. The resulting (endogenous) demand is a perfect step

function. All receivers who buy have the same valuation, equal to price, and

all receivers who abstain from buying have valuation equal to zero. However,

this very particular demand function is not assumed, but is endogenously

generated by optimal product design. In particular, full surplus extraction

does not mean that the monopolist maximizes the utilitarian welfare (as will

be seen in the next subsection).

If the monopolist faces a situation somewhere between a fully inflexible

classical monopolist and fully flexible monopolist in Proposition 2, then some

surplus may be created for non-buyers and some net surplus may be left with

buyers, but still there is likely to be some "gap" in valuations between buyers

and non-buyers, as the monopolist wants to increase the valuations of the

buyer with the lowest valuation at the expense of the valuations of non-

buyers. Flexibility in product design gives them some opportunity to create

this gap.
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4.2 Utilitarian welfare

Suppose that the sender is interested in maximizing the utilitarian welfare

function

W (D) =
∑
n

(
D̄n −Dn

)
This may be because the sender is a profit-maximizing monopolist who can

price discriminate, or because it is a non-for-profit mass medium whose ob-

jective is to maximize social welfare.

In the example depicted on Figure 1, the iso-welfare lines are lines with

the slope −1, such as
←−→
BWB or

←→
EF. Point E maximizes utilitarian welfare

and the resulting total social welfare is represented by the distance form zero

to F. Clearly, the optimal newspaper of uniform-pricing monopolist does not

have to be effi cient in this sense. Even if the uniform-pricing monopolist

extracts all created surplus, not all potential surplus is created.

Note also that it is diffi cult to observe the level of ineffi ciency associated

with a monopolist, even if an investigator observed the valuations of the re-

ceivers. One can observe that both receivers are served by the monopolist,

so there is no reduction in quantity supplied known from the classical mo-

nopolist facing a fixed demand. Ineffi ciency comes from the fact that actual

valuations of the receivers are endogenously shaped by the monopolist facing

a constraint that price must be uniform.

5 Gaussian-quadratic case

Next we assume that the source is Gaussian, X ∼ N (0, K), where K � 0

is a covariance matrix,9 and the distortion is square distance, dn (xn, x̂n) =

(xn − x̂n)2 .

Let H be the covariance matrix of a random variable Z = X − X̂.
The Gaussian-quadratic example is convenient because, still being rich

enough to give interesting results, it simplifies the analysis in three ways.

Firstly, it can be shown that the distribution solving the problem in Defi-

9K � 0 means that matrix K is positive semidefinite.
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nition 1 must be Gaussian, and so the only free variable is the covariance

matrix H. Secondly, the objective in the definitions of the rate distortion

functions is relatively tractable, because there is a simple expression for mu-

tual information if the underlying distributions are Gaussian. Thirdly, the

constraint that for every n the expected distortion cannot exceed Dn trans-

lates into Hnn ≤ Dn. In the Gaussian-quadratic case, the functions R (D)

and R̄ (a,B) can be computed by solving simpler problems:

Lemma 4 Under the Gaussian-quadratic assumption

R (D) = min
H

(1/2) log (detK/ detH) s.t. (3)

H � 0, K −H � 0, Hnn ≤ Dn for all n

R̄ (a,B) = min
H

(1/2) log (detK/ detH) s.t. (4)

H � 0, K −H � 0,
N∑
n=1

anHnn ≤ B

5.1 Solution

The aim of this section is to provide an algorithm to derive R̄ (a,B); then

Lemma 2 can be used to recover R (D) .

Let A = diag a be a matrix with a on the main diagonal and zero else-

where. After changing variables Ka = A1/2KA1/2 and Ha = A1/2HA1/2, we

can write (4) as10

R̄ (a,B) = min
Ha

(1/2) log (detKa/ detHa) s.t. (5)

Ha � 0, Ka −Ha � 0, tr (Ha) ≤ B

To solve (5), let Ka = QΛQ′ be the eigendecompostion of Ka, where Q

is a matrix containing orthogonal eigenvectors, and Λ = diag λ is a diagonal

10Note that (i) detK/detH = det
(
A1/2KA1/2

)
/ det

(
A1/2HA1/2

)
, (ii) H � 0 ⇔

A1/2HA1/2 � 0, andK−H � 0⇔A1/2KA1/2−A1/2HA1/2 � 0, (iii)
∑N

n=1 anHnn ≤ B ⇔
tr
(
A1/2HA1/2

)
≤ B.
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matrix with eigenvalues λ = (λ1, ..., λN) . Once we write H̃ = Q′HaQ, the

problem (5) becomes11

R̄ (a,B) = min
H̃

(1/2) log
(

det Λ/ det H̃
)
s.t. (6)

H̃ � 0, Λ− H̃ � 0, tr
(
H̃
)
≤ B

This representation is useful because some properties of optimal H̃ be-

come immediately apparent. In particular, if an off-diagonal element of a

feasible matrix H̃ is strictly positive, lowering it increases the determinant

in the objective function, and does not violate any of the constraints. Hence

an optimal H̃ must be diagonal, and det H̃ is just the product of its diagonal

elements. Thus, the problem simplifies further to

R̄ (a,B) = min
H̃11,...,H̃NN

(1/2) log
(

det Λ/
(
H̃11 × ...× H̃NN

))
s.t.

0 ≤ H̃nn ≤ λn for all n,
∑
n

H̃nn ≤ B

Setting up a constrained maximization leads to solution

H̃nn =

{
λ∗ if λn > λ∗

λn if λn ≤ λ∗
(7)

where λ∗ is selected so that
∑

n H̃nn = B.12

Let H̃ (a,B) be the solution of this problem and let H (a,B) be the

solution to problem (4). We have

Proposition 3 The solution to problem (4) is

H (a,B) = A−1/2QH̃ (a,B)Q′A−1/2

where H̃ (a,B) is defined by (7).

11Note that (i) detKa/ det Ĥ = det Λ/ detQ′ĤQ, (ii) Ĥ � 0 ⇔ Q′ĤQ � 0, and Ka −
Ĥ � 0⇔ Λ−Q′ĤQ � 0, (iii) tr

(
Ĥ
)

= tr
(
Q′ĤQ

)
.

12This solution method is called the water-filling algorithm.
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The following result may be of some interest

Lemma 5 Suppose X ∼ N (0, K) has a rate distortion function R̄X (A,B) .

Consider a re-scaled random variable Y = CX, where C is an n×n diagonal
matrix of weights (hence, Y has the same correlations as X). Then the rate

distortion function of Y satisfies R̄Y (A,B) = R̄X (CAC,B) .

5.2 Example: Independent dimensions

Assume that receivers’states of nature are independent. The solution is par-

ticularly simple in this case. Matrix K is diagonal, so is Ka. Eigenvalues are

equal to variances, Λ = Ka. To find the UPF , as characterized byR = R (D),

use equation (3) directly and note that H must be diagonal too. Choose a

dimension i that will be determined in terms of all remaining distortions D−i
and level R. Choose Hnn = Dn for all n 6= i. Then it must be that Hii is

such that HiiΠn6=iDnn = 2−2R (Πnσ
2
n), provided that such Hii can be found

in (0, σ2i ). That is, the UPF has a Cobb-Douglass feel to it.

If the receivers are independent, then the monopolist is fully flexible in

trading off valuations among the receivers, in the sense that the set UPF

extends to every axis; the conclusion of Proposition 2 holds. Moreover,

Proposition 4 Suppose that the receivers are independent and symmetric
(σ2i = σ2 for every i). Then the uniformly pricing monopolist sells the mes-

sage to all receivers.

From the outset, this result is not obvious, because it is not entirely

clear why the best way to inform two receivers whose states are completely

independent involves creating a message that is somewhat informative to

both. It turns out that trying to inform a receiver runs into a familiar

phenomenon of diminishing marginal returns. That is why it is better to start

reducing a distortion of another receiver, before investing more in distortion

reduction of a receiver whose distortion is already low. If symmetric receivers

are somewhat correlated, then intuitively there are even more incentives to

sell to all of them; compare the UPF on the first two pictures of Figure 2.
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5.3 Example: Two dimensions

Consider the case of two dimensions, N = 2. Let σ2n > 0 be the variance of

Xn and let ρ ∈ (−1, 1) be the correlation coeffi cient. Matrix K is

K =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]

One can follow the algorithm of section 5.1, but in this case it is easier

to solve problem (3) directly. Focus on the part of the solution in which

inequalities in the last constraint are satisfied with equalities; in this case,

the only remaining variable to pin down is the covariance H12. The problem

involves the maximization of detH, so clearly, H12 should be as close to

zero as possible, while obeying both remaining semipositiveness constraints.

MatrixH is positive semidefinite if and only if its determinant is nonnegative,

or

H12 ∈
[
0±

√
D1D2

]
Likewise, matrix K−H is positive semidefinite if and only if its determinant

is nonnegative, or

H12 ∈
[
ρσ1σ2 ±

√
(σ21 −D1) (σ22 −D2)

]
(8)

Consider the case of non-negative correlation ρ ≥ 0. Provided that the

two intervals are not disjoint, the solution is this: if the lower bound of the

interval in (8) is negative, then optimal H12 should be zero. Otherwise, it

should be equal to this lower bound. Hence

H12 = max

{
0, ρσ1σ2 −

√
(σ21 −D1) (σ22 −D2)

}
Figure 2 shows the level curves of the function R (D1, D2) for three differ-

ent cases (with equality constraint, Hnn = Dnn), where the axis are flipped

so that they measure receiver’s valuation, vn = σ2n − Dn, rather than her

distortion Dn.
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Figure 2: Level curves of R (D1, D1)
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6 Correlation among receivers

The second example above leads to an interesting observation. The corre-

lation of the states of nature among the receivers (optimal but unknown

actions) is ρ ≥ 0, while the correlation of the actual actions, if σ2n > Dn, is

r12 = (K12 −H12) /
√

(σ21 −D1) (σ22 −D2)

= min

{
ρσ1σ2/

√
(σ21 −D1) (σ22 −D2), 1

}
That is, the only case when these two correlations are equal is when the

dimensions are independent, ρ = 0. Otherwise, communication constraint

works as a magnifier of correlation in the following sense: if the correlation

of unknown optimal actions is positive, ρ > 0 then

1. r12 (D) is increasing in D, and hence r12 (D) > ρ.

2. There is a finite R∗ > 0 such that for all R < R∗, optimal communica-

tion has r12 (D) = 1.

The same holds for the case of negative ρ, but the correlation increases

in absolute terms and becomes negative one.

The second of these points partially generalizes to the case N > 2. Let

K > 0 mean that all elements of K are strictly positive.

Proposition 5 Assume Gaussian-quadratic case and letK > 0. There exists

R∗ > 0 such that for all R < R∗, optimal communication implies that the

correlation among receivers’actions is one.

The first observation above does not necessarily hold if N > 2; that is,

it is not always true that function rnm (.) is monotonic. In practice, it often

is. In particular, it is if all correlations are the same, ρnm = ρ, for all n,m.
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However, consider an example in which

K =


1

.8 1

.03 .03 1

.2 .5 .8 1

 .

Let us express the correlations as a function of (a,B) . The correlation be-

tween actions of the first and the third receivers, r31 (a,B) ,may be decreasing

in B. In fact, on a certain interval this correlation becomes negative (and

obviously less than ρ31 = .03), see Figure 3.

Secondly, the requirement K > 0 in the Proposition is needed because if

some correlations ρnm are negative, then the conclusion of the Proposition

does not have to hold. Suppose that

K =

 1

.1 1

.1 −.1 1

 .
In this example, rnm (a,B) reaches ±0.5 and stays there for all B above

some cutoff level and a equal to ones. In other words, the correlation among
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receivers’ action is not perfect no matter how bad the communication is.

This, however is a nongeneric phenomenon; a small change of K or a means

that the values of rnm (a,B) will attach themselves to plus or minus one, for

all B large enough.

In short, the poorer the communication, the more correlated actions of

the receivers in absolute terms —at least eventually and generically.

7 Extensions and future research

Suppose that different receivers face different communication constraints.

For example, let receiver one be more impatient relative to receiver two,

R1 < R2. One can solve the resulting distortion profiles (D1, D2) for a given

"joint" capacity, R = R1 = min (R1, R2), exactly as in the analysis above.

That is, for any D1, one can find D2 that can be achieved if only capacity R

for both receivers was available; then one can use the remaining capacity of

receiver two, (R2 −R1), to further reduce her distortion to some D̃2 < D2.

By varying D1, one obtains different values of D̃2, and thus the whole Utility

Possibility Frontier.

The capacity constraint in the model above can be interpreted as a special

form of cost function in which the cost of reading R′ digits of the message is

zero if R′ ≤ R and the cost is infinity otherwise. Alternatively, one can have

a cost function that is smoother; let the cost of reading at rate R be denoted

by c (R) , e.g. with a constant average cost c (R) /R = c. Then, the size of

R in equilibrium would be endogenous, a result of receiver’s decision, for a

given informational policy of the sender.

Non-aligned interests of the sender and the receiver. Suppose that there

is only one receiver. In our discussion up to now, the boundary of feasi-

ble communication was characterized by function R (D), but it can also be

characterized by its inverse, D (R), defined as

D (R) = min
px̂|x

EX,X̂d
(
X, X̂

)
s.t.

I
(
X, X̂

)
≤ R
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So far we assumed that the sender was interested in minimizing some

combination of receivers’expected distortions, but was not interested in their

actions per se. This is often justified, like in the model of mass media who

want to reduce readers’ uncertainty. However, in many cases newspapers

want to persuade the readers to vote for a party, to change their lifestyle, or

to buy a particular product. So suppose sender’s incentives are not aligned

with the receiver’s, e.g. there is one sender, whose loss function is c (x, x̂)

and one receiver, whose loss function is d (x, x̂) . Now c does not have to be

equal to d.

The problem of the sender (who is assumed to be the designer of encoding-

decoding functions) is this

C (R) = min
px̂|x

EX,X̂c
(
X, X̂

)
s.t.{

I
(
X, X̂

)
≤ R

x̂ ∈ arg miny
∑

x px|x̂ (x|x̂) d (x, y)

The main difference is that there is an extra constraint —the Incentive Com-

patibility. It is convenient to imagine that the communication does not in-

volve receiving a message f (x) , but rather a recommendation what to do,

x̂ = g (f (x)) . The term under the argmin is the expected distortion of the

receiver if x̂ has been recommended but y was selected. Incentive Com-

patibility then states that the recommendation received from the sender is

actually the minimizer of receiver’s expected distortion. In general, Lemma

1 would not hold anymore. This is an interesting model and its analysis is

left for future research.

8 Appendix A: Proofs

8.1 Proof of Lemma 2

Plugging in R (D) on the right-hand side of equation (2) we obtain
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min
px̂|x(x̂|x)

min
D

I
(
X; X̂

)
s.t. (9)∑

n

anDn ≤ B, EX,X̂dn (xn, x̂n) ≤ Dn

Note that for any px̂,x (x̂, x) that satisfies∑
n

anEX,X̂dn (xn, x̂n) ≤ B (10)

there exists a vectorD that satisfies the constraints of problem (9). Replacing

them with (10) we obtain a definition of R̄ (a,B) .

For the second result, note that for any configuration of (a,B) and D

such that
∑

n anDn = B we have R (D) ≥ R̄ (a,B). This is because the

minimization in R (D) involves a smaller constraint set. It remains to show

that it is impossible that R (D) > maxa R̄ (a,
∑

n anDn).

By Lemma 3 the set of distortions that generate strictly lower rate than

vectorD, {y : R (D) > R (y)}, is convex. By supporting hyperplane theorem,
there is a vector a 6= 0 such that

∑
n anDn ≤

∑
n anyn for every vector y such

that R (D) > R (y) . Since R (.) is non-increasing, a ≥ 0; one can assume

that a ∈ ∆N . Since R (.) is continuous, for this a and for every vector x

such that
∑

n anDn =
∑

n anxn we have R (D) ≤ R (x) . Take that a and let

B =
∑

n anDn. The value of R̄ (.) evaluated at this (a,B) must not be lower

than R (D) . This implies the result.

8.2 Proof of Lemma 3

The fact that R (D) is non-decreasing and continuous is standard. The proof

of convexity is a direct extension of CT (Lemma 10.4.1, p. 316) to the

case of multidimensional domain, and follows from the convexity of mutual

information.

Consider a distortion tuple D′. Let p′x̂|x be the marginal distribution that

is a solution at D′ and let I ′ be the value of mutual information achieved at
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p′x̂|x. Similarly, for another D
′′ define p′′x̂|x and I

′′. For any α ∈ (0, 1) take a

convex combination of distortions Dα = αD′ + (1− α)D′′ and now consider

an minimization problem for thisDα.Notice first that a corresponding convex

combination of solutions p′x̂|x and p
′′
x̂|x, denoted by p

α
x̂|x, is also in the feasibility

set in the new problem. Namely, if for all i∫
X,X̂

p′x̂|x (x̂|x) p (x) di (xi, x̂i) dxdx̂ ≤ D′i∫
X,X̂

p′′x̂|x (x̂|x) p (x) di (xi, x̂i) dxdx̂ ≤ D′′i

then for all i ∫
X,X̂

pαx̂|x (x̂|x) p (x) di (xi, x̂i) dxdx̂ ≤ Dα
i

Secondly, mutual information is a convex function of the conditional dis-

tribution, for a given marginal distribution. That is, if Iα is a mutual infor-

mation for a distribution pαx̂|x we have αI
′ + (1− α) I ′′ ≥ Iα.

Together we can write

αR (D′) + (1− α)R (D′′) = αI ′ + (1− α) I ′′

≥ Iα

≥ R (Dα)

8.3 Proof of Lemma 4

The entropy of the multivariate Gaussian random variable X ∼ N (0, K) can

be expressed as

h (X) = (1/2) log (2πe)N detK
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Mutual information can be bounded below

I
(
X; X̂

)
= h (X)− h

(
X|X̂

)
= h (X)− h

(
X − X̂|X̂

)
≥ h (X)− h

(
X − X̂

)
≥ h (N (0, K))− h (N (0, H))

= (1/2) log (2πe)N detK − (1/2) log (2πe)N detH

= (1/2) log (detK/ detH)

where the first inequality follows from the fact that conditioning reduces

entropy, and the second follows from the fact that Gaussian distribution

maximizes entropy for a given covariance.

To see that this bound is achievable by some distribution, consider a

distribution X|x̂ of the following form: let X̂ ∼ N (0, K −H) and let Z ∼
N (0, H) be independent. Let X = X̂ + Z. Then X ∼ N (0, K), as desired.

The first inequality above is satisfied with equality because of independence

of Z = X − X̂ and X̂, while the second by the fact that Z = X − X̂ is

distributed normally.

Hence I
(
X; X̂

)
≥ (1/2) log (detK/ detH), with equality as long as X̂ ∼

N (0, K −H) and Z ∼ N (0, H) are independent.

8.4 Proof of Proposition 5

Lemma 6 IfK > 0, then the greatest eigenvalue ofKa is simple, λ
Ka
1 > λKa

2 ,

and the normalized eigenvector that belongs to it has all elements positive.

Proof. Suppose that all correlations are strictly positive, K > 0. Then,

by Perron—Frobenius theorem, there exists the greatest simple eigenvalue of

matrix K, λ1 > maxn6=1 λn = λ2. Also, its normalized eigenvector has all

elements positive. Likewise, there exists the greatest simple eigenvalue of a

re-scaled matrix Ka = A1/2KA1/2, for any a ≥ 0. This is true even if some

diagonal elements of A are zero. To see this, suppose that only first i of the

diagonal elements of A are strictly positive. Then Ka can be written in a
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block form as

Ka =

[
Ki
a 0

0 0

]
where Ki

a is the part of matrix Ka consisting of first i × i of its elements,

all strictly positive. Eigenvalues of Ka are solutions of the characteristic

equation

0 = det

([
Ki
a 0

0 0

]
− λIN

)
= det

(
Ki
a − λIi

)
det (−λIN−i)

So they are equal to i eigenvalues ofKi
a andN−i zeros. By Perron—Frobenius

theorem there exists the greatest simple eigenvalue of Ki
a, which, clearly, is

also the greatest simple eigenvalue of Ka itself.

Now fix a. As B gets closer to its upper bound tr (Ka), the water-level λ
∗

eventually falls into an interval λKa
2 < λ∗ < λKa

1 , which is non-empty, by the

Lemma. Then for any two receivers n,m,

cov
(
X̂a
n, X̂

a
m

)
=
(
λKa
1 − λ∗

)
qan1q

a
m1

and, noting that all elements of the first eigenvector are positive, qan1 > 0 and

qam1 > 0 we have that the correlation between X̂a
n and X̂

a
m is

r
(
X̂a
n, X̂

a
m

)
=

(
λKa
1 − λ∗

)
qan1q

a
m1√(

λKa
1 − λ∗

)
(qan1)

2
√(

λKa
1 − λ∗

)
(qam1)

2
= 1

DefineRo (a) > 0 to be a cutoffrate, such thatR ≤ Ro (a) implies r
(
X̂a
n, X̂

a
m

)
=

1.

Contrary to the statement of this Proposition, suppose that for any pos-

itive R∗, we continue to find a, such that Ro (a) < R∗. In this sequence of

vectors a, there is a convergent subsequence. Let a∗ be a convergence point,

that is, there is a sequence of a such that lima→a∗ R
o (a) = 0. Eigenvalues

of Ka are a continuous function of A, so must be Ro (·). Hence Ro (a∗) = 0.
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But, by the previous paragraph we have Ro (a∗) > 0. This is contradiction.

9 Appendix B: Rate distortion function

As was mentioned earlier, the values R (D) and Rc (D) are equal in a certain

limiting sense. The purpose of this section is to state what limit this is (but

not prove the equality).

Suppose that the designer of the encoding-decoding functions is allowed

R bits to communicate the realization of a random variable X, which has

a distribution p (x) . The distortion function, which measures the loss when

x is represented by some x̂, is given too, d (x, x̂). Suppose that the optimal

encoding-decoding functions achieves some expected distortionD1.Now, con-

sider a different experiment. Suppose that instead of having one realization

of X, the designer has two i.i.d realizations of this random variable, (X1, X2).

At the same time the designer is allowed to use twice as many bits, 2R. In

other words, there is both more information to transmit and a greater capac-

ity, but still the number of bits per one sample point is constant at R. What

is the associated distortion? Clearly, the designer can replicate the previous

design independently for two realizations of X and will end up paying the

distortion cost twice, or the same distortion per sample point, D1. However,

this, in general, will not be optimal. The optimal design will encode and

decode the two sample points together. That way, the distortion per sample

point will be lower, D2 < D1. This is true even if the sample points are sta-

tistically independent of each other.13 As the sample size (number of these

experiments) goes to infinity, this sequence will converge down to some D∗.

It turns out that this limit can be expressed using only the primitives: the

distribution p and the distortion function d. Namely, it is exactly the (inverse

of) information rate distortion function defined in (1).

Formally speaking, let X1, ..., XT be an i.i.d. sample of size T from distri-

bution p (x), x ∈ X . The encoding function for the whole sample is denoted
13CT, p.301: "One of the most intriguing aspects of this theory is that joint descriptions

are more effi cient than individual descriptions. It is simpler do describe an elephant and
a chicken with one dscription than to describe each alone"
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fT : X T →
{

1, ..., 2TR
}
and a decoding function is gT :

{
1, ..., 2TR

}
→ X T .

Since we allow X, X , x etc. to be multidimensional, gT may also be multidi-
mensional, and for a dimension n we may write gnT :

{
1, ..., 2TR

}
→ (Xn)T .

Given a distortion function, dn (xtn, x̂tn) for dimension n and a single sample

point xtn ∈ Xn, let the dimension n distortion between the entire samples
xTn = (x1n, ..., xTn) and x̂Tn = (x̂1n, ..., x̂Tn) be

davg,Tn

(
xTn , x̂

T
n

)
= (1/T )

T∑
t=1

dn (xtn, x̂tn)

The expected distortion associated with (fT , gT ) at dimension n is the ex-

pected value of the above, Edavg,Tn

(
xTn , gnT

(
fT
(
xTn
)))

.

The rate-distortion (R,D) is achievable if, for a given average rate R,

there is a sequence (fT , gT ), such that

lim
T→∞

Edavg,Tn

(
xTn , gnT

(
fT
(
xTn
)))
≤ Dn

The rate distortion functionRc (D) is the infimum of ratesR such that (R,D)

is achievable.

The following theorem is the main result: Rc (D) = R (D) , where R (D)

is specified in Definition (1).
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